

Circuit Integration and Circuit Demonstrations

Jeff Calame
Naval Research Laboratory

DARPA / MTO High Frequency Integrated Vacuum Electronics (HiFIVE) Industry Day Arlington, VA, July 24, 2007

Background on Integration - Conventional Methods

- Interaction structure / vacuum envelope fabricated from various pieces and brazed or welded together
- Cathode: Pressing, sintering, machining, impregnating, coating, activating
- Electron gun fabricated with many manual steps, including numerous welding & brazing operations
- Joining of electron gun, collector, and input/output windows to interaction structure via seal rings, welding
- Hand attachment and tweaking of magnets

Integration – Revolutionary Opportunities

Some Benefits of Integration

- Self Alignment on Common Substrate
 - Electron Source, Beam, Interaction Structure, Collector
 - Vast Improvement in Achievable Mechanical Tolerance, Overall Yield
- Elimination of Most Manual Assembly Steps
- Ability to also Microfabricate Thermal Management Network on Rear Side of Substrate
- Potential for Many Devices on a Single Large Wafer
- Manufacturing Economies of Scale
- Also Provides a Path to True THz Vacuum Electronics

Integration Enablers – Circuit Microfabrication

	LIGA	DRIE	Other MEMS Processes
	200 µm	30 µm	N: number of turns Copper bridge W 50µm Copper bottom
_		The second secon	TO W548 9008 10.0U HSHE
Vertical Depth Range	5 to 1000 μm	$2 - \sim 400 \ \mu \text{m}$ (5 - 200 μm easy)	$1 - \sim 80 \mu\text{m}$ (1- 20 μ m easy)
Min. Horizontal Feature Size	10 μm	~ 5 µm	~ 2-3 µm
Aspect Ratio	100:1	100:1	~ 5:1
Tolerance	~ 1-2 μm	~ 0.5 µm	< 1 μm

Integration Enablers – Cold Cathodes

Cold Microfabricated Cathodes

Microfabricated Self Alignment Trenches, Stops, and Structures; MEMS Flip-Up Techniques

Cold Microfabricated Cathodes with Carbon Nanotubes

Configurations that Intrinsically Emit Parallel to the Substrate Plane

Program Demonstrations

Phase I

Demo 1A: Beam Stick

Demo 1B: Cold Test

Phase II

Demo 2A: High Power Amplifier

Demo 2B: Advanced Cathode

Phase III

Demo 3: Fully Integrated HPA

Demo 1A: Beam Stick

Beam Formation and Transport

- Demonstrate Creation and Propagation of a High Aspect Ratio Electron Beam
- Sheet, Annular, or Multiple Beams
- Propagate through Volume (Transverse Size, Length)
 Consistent with Eventual RF Circuits
- Electron Source / Gun / Collector (need not be the advanced cathode)
- Magnetic Field System
- Critical Issue is Control / Prevention of Electron Beam Instabilities (and Associated Interception)
 - Curling of Beam Edges (Diocotron Instability)
 - Beam Breakup

Go/No-Go Metrics

Beam Voltage: 20 kV

Circuit Current Density: 750 A/cm² (in Beam Stick, pulsed is OK)

Beam Aspect Ratio: 25

Beam Transport Efficiency: 95%

Government Laboratory Validation of Beam Stick Demo (1A)

After beam stick testing at performer facilities.....

- The beam stick (or a copy thereof) as well as testing procedures and description of the required testing equipment shall be delivered to the Government
 - Independent Government testing will be performed using suitable high voltage power supplies (modulators) and current/voltage diagnostics
 - Verification that Go/No-Go metrics have been met
- Performer will also provide design details on the beamstick electron source (electrode & cathode shapes, characteristics), beam tunnel geometry, and magnetic confinement system (magnet and pole piece sizes, compositions, field strengths)
 - The Government will perform independent analysis using electron trajectory codes, to compare with beam stick testing

Test Bed with 20 kV Modulator at NRL

Beam Trajectory / Dynamics Modeling at NRL

Demo 1B: Cold Test

 Demonstrate that the Microfabricated Interaction Structure Provides Required Electromagnetic Characteristics

Go/No-Go Metric

Center Frequency Accuracy: 2%

- Frequency Response
- Transmission / Reflection
- Dispersion / Resonance
- Compare to Electromagnetic Simulation Codes
- Accuracy / Tolerance
- Consistent with Control of Parasitic Electromagnetic Modes (Mode Competition)

Government Laboratory Validation of Cold Test Demo (1B)

After cold testing at performer facilities.....

- The interaction structure (or a copy thereof) shall be delivered to the Government
 - Cold test behavior will be independently measured and evaluated
- Performer will provide dimensions and drawings for the structure, so that electromagnetic models can be independently created
 - Simulations will be performed by the Government to verify behavior and compare to cold test results
- Performer will provide the Government with a preliminary electrical design for the Phase II HPA sufficient in detail to establish that these structures as tested are consistent with achieving the Phase II objectives
 - Simulations will be performed with large signal beam-wave interaction simulation codes to verify design, including parasitic EM mode control

Upper-MMW Vector Network Analyzer and Cold Test Facilities at NRL

140-220 GHz

220-325 GHz

EM Simulations of Upper-MMW Structures at NRL

Demo 2A: High Power Amplifier

- HPA Device to Include a Demonstration of all Necessary Circuit Elements and Components
 - Interaction Structure
 - Electron Source and Electron Gun (need not be the advanced cathode)
 - Magnetic Confinement System
 - Efficient Beam Collector
 - MMIC First Stage Driver
 - Thermal Management Approach
- Goal is to Prove the Validity of the Overall Circuit Design that will Result in an Extremely High Power Bandwidth Product
- Thermal Management Validated by a Minimum of 100 hours of Continuous-Wave Operation of the HPA

Go/No-Go Metrics

Output Power: 50 W (average power at 220 GHz, external to device)

Bandwidth: 5 GHz

Power-Bandwidth Product: 250 W-GHz

Efficiency: 5% (total wall-plug efficiency)

Spectral Purity: - 50 dBc (at 250 kHz from carrier)

Driver Output Power: 50 mW (average power, external to device)

Government Laboratory Validation of High Power Amplifier Demo (2A)

After HPA testing at performer facilities.....

- The HPA Demo (or a copy thereof) as well as testing procedures and description of the required testing equipment shall be delivered to the Government
 - Independent Government testing will be performed using suitable high voltage power supplies (modulators) and current/voltage diagnostics
 - Verification that Go/No-Go metrics have been met
 - Verification that no mode competition exists
- Performer will also provide design details of all the components (electron source, gun, interaction circuit, collector, magnet, MMIC, thermal management scheme)
 - The Government will perform independent analysis using small and large signal beam-wave interaction simulation codes, as well as thermal analysis codes, to compare with measured performance.

Test Bed with 20 kV Modulator at NRL

Beam-Wave Analysis and Thermal Analysis Codes at NRL

Demo 2B: Advanced Cathode

Demonstrate an Advanced High Current Density Cathode

- Achieve a Current Density Consistent with Circuit Design
- Characterize Current vs. Voltage
- Key Issue is Achieving a Long Lifetime
 - At Least 1000 Hours Lifetime Under Realistic Vacuum and Voltage Conditions
 - Characterize Current vs. Time
- Cathode must be Suitable for Integration into the HPA During Phase 3

Go/No-Go Metric

Total Current: 250 mA
(as a separate component,
measured at the cathode surface,
for 1000 hours life)

Government Laboratory Validation of Advanced Cathode Demo (2B)

After cathode testing at performer facilities.....

- The advanced cathode (or a copy thereof) shall be delivered to the Government
 - Emission characteristics will be independently measured and evaluated
 - Emission temporal stability and lifetime
 - Current and current density
- Additional Characterization of a Variety of Relevant Cathode Properties
 - Emission uniformity
 - Cathode surface chemistry

Emission Image

Emission Microscope at NRL

Demo 3: Fully Integrated HPA

- Fully Integrated HPA Meeting the Goals of Program
- Compact Assembly Including
 - Advanced High Current Density, Long Life
 Cathode and Associated Electron Optics
 - High Aspect Ratio Beam(s) and Magnetic Confinement System
 - High Efficiency Interaction Structure
 - Efficient Beam Collector
 - High Power MMIC Driver
 - Thermal Management Approach
- Demonstrate All Program Performance Metrics Simultaneously
- Continuous-Wave Operation of the HPA

Final Required Performance

Output Power: > 50 W (average power at 220 GHz, external to device)

Bandwidth: > 5 GHz

Power-Bandwidth Product: > 500 W-GHz

Efficiency: > 5% (total wall-plug efficiency)

Total Current: > 250 mA (integrated into the HPA)

Spectral Purity: - 50 dBc or better (at 250 kHz from carrier)

Driver Output Power: > 50 mW (average power, external to device)

Government Laboratory Validation of Fully Integrated HPA Demo (3)

After Fully Integrated Objective Demo HPA testing at performer facilities.....

- The Fully Integrated Objective Demo HPA (or a copy thereof) as well as testing procedures and description of the required testing equipment shall be delivered to the Government
 - Independent Government testing will be performed using suitable high voltage power supplies (modulators) and current/voltage diagnostics
 - Verification that the final required metrics have been met